M2 suggested elementary short questions

- 1. Let $y = e^{3x}$. Find $\frac{dy}{dx}$ from first principles.
- 2. (a) Using mathematical induction, prove that

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
 for all positive integers *n*.

- (b) Using (a), evaluate $3^3 + 6^3 + 9^3 + \dots + 300^3$.
- 3. Let *n* be a positive integer. The coefficient of x^2 in the expansion of $(1 + 3x)^n (1 2x)^2$ is 160. Find
 - (a) n,
 (b) the coefficient of x³ in the expansion.
- 4. (a) Using integration by substitution, find $\int \frac{x}{e^{x^2}} dx$.
 - (b) At any point (x, y) on the curve *C*, the slope of the tangent to *C* is $\frac{3x}{e^{x^2}}$. If the point (0, 1) lies on *C*, find the equation of *C*.

5. (a) Prove that $\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{\cos(\alpha+\beta)+\cos(\alpha-\beta)} = \tan\beta.$

(b) Suppose that sin(x + y) - 2cos(x + y) = 2cos(x - y) + sin(x - y) for some real numbers x and y. Using (a), or otherwise, find the value of tan2y.

- 6. Define $f(x) = \frac{3x^2 x + 2}{x + 1}$ for all $x \neq -1$. Denote the graph of y = f(x) by C. Find
 - (a) the asymptote(s) of C,
 - (b) the equation of the tangent to C at the point with the x-coordinate -2.
- 7. Consider the curve C: $y = \cos x \sin 2x$, where $0 \le x \le \frac{\pi}{2}$.

Find the extreme point(s) of C.

- 8. (a) Express $(\sec x \cos x)^2$ in the form of $\sec^2 x + p\cos^2 x + q$, where p and q are constants.
 - (b) Using the result of (a), or otherwise, evaluate $\int_0^{\frac{\pi}{4}} (\sec x \cos x)^2 dx$.
- 9. (a) Find $\int x \ln 2x \, dx$.
 - (b) Consider the curve *C*: $y = \sqrt{x \ln 2x}$, where $x \ge \frac{1}{2}$. Let *R* be the region bounded by *C*, the *x*-axis and the straight line x = 5. Find the volume of the solid generated by revolving *R* about the *x*-axis.
- 10. *M* is a point lying on *XY* such that XM : MY = 1 : 2. Let $\overline{OX} = \mathbf{x}$ and $\overline{OY} = \mathbf{y}$, where *O* is the origin.
 - (a) Express \overrightarrow{OM} in terms of **x** and **y**.
 - (b) It is given that $|\mathbf{x}| = 2$, $|\mathbf{y}| = 3$ and $\mathbf{x} \cdot \mathbf{y} = 2$. Using the result of (a), find $|\overline{OM}|$.

11. Let $\overrightarrow{OA} = -\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{OB} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = 2\mathbf{j} + 5\mathbf{k}$.

- (a) Evaluate $\overrightarrow{OA} \times \overrightarrow{OB}$.
- (b) Using the result of (a), or otherwise, find the angle between OC and the plane OAB.

12. Consider the following system of linear equations in real variables x, y, z

(E):
$$\begin{cases} 3x + y + z = 1\\ -x + az = b\\ 2x + y + 3z = 2 \end{cases}$$
, where a and b are real constants.

(a) Assume that (*E*) has a unique solution.

- (i) Find the range of values of *a*.
- (ii) Express *y* in terms of *a* and *b*.
- (b) Assume that (*E*) has infinitely many solutions. Solve (*E*).
- 13. Let $A = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
 - (a) Find B^{-1} .
 - (b) Find a matrix C such that AB = BC.
 - (c) Using the result of (b), find A^{100} .
- 14. (a) Solve the equation $\sec^2 x 8\cos x = 0$, where $0 \le x < \frac{\pi}{2}$.
 - (b) The following figure shows the shaded region bounded by the curve C_1 : $y = \sec^2 x$ and the curve C_2 : $y = 8\cos x$, where *O* is the origin. Find the area of the shaded region.

- 15. The coordinates of the points A and B are (-1, 0) and (5, 0) respectively. The point C moves upwards along the *y*-axis from the origin O such that the perimeter of $\triangle ABC$ increases at a constant rate of $\frac{1}{7}$ units per second.
 - (a) Find the rate of change of *OC* when $OC = 2\sqrt{6}$ units.
 - (b) Let $\angle ABC = \theta$ radians.
 - (i) Using the result of (a), find the rate of change of θ when $OC = 2\sqrt{6}$ units.
 - (ii) Find the rate of change of θ when $AC \perp CB$.